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Page 15, line 2 should read:
"be this efficiency factor. Then kp(T) = comst 1(T)T, or"

Page 20, equation (21) should read:

o -2
kR(T) = 20 x 10732 (___mlzgles) sec™?

NT
Note: The value of the constant kg(T) used in this Technical Note
is £J_5_ x 10722, Replacing this value by 22 x 10°°° in evaluating
T T

relaxation times would modify figure 8: The shaded portion of the figure
would be uniformly displaced upward by a factor of 2.5. Also the effect
on the values of (-rp)02 resction &iven on page 32 is to multiply all of
them by 2.5.

Page 22, the definition of f4 should read:

£y = number of moles of species i _ 1ji
total number of moles in cold air ano
k

Page 25, line 12 from the bottom should read:

"Equations (26) and (27) were used with M = 28.8, T = 0.22, and"
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TECHNICAL: NOTE L1k

EFFECT OF OXYGEN RECOMBINATION ON ONE-DIMENSIONAL FLOW
AT HIGH MACH NUMBERS

By Steve P. Helms

SUMMARY

A theoretical asnalysls of air flow in a channel in which oxygen
dissociation and recombilnation occur has been made. The channel is viewed
as a streamtube in the flow around a blunt body. The analysis is begun
with the writing of the differential equation which gives the concentra-
tion of atomic oxygen as & function of distance along the channel. The
differential equation involves the reaction rate constant for the oxygen
recombination reaction. This rate constant is evaluated theoretically
from & formula due to Wigner, which ylelds & different result from simple
collision theory. The equation for the atomic oxygen concentration thus
obtained is solved together with the flow equations.. The equations may
be solved by ordinary hand-computation procedures. An example is worked
out to show the varietion of the flow in a certain streambtube and its
dependence on whether the oxygen reaction 1s "frozen,” "in local equilib-
rium,”" or proceeding at the finite rate indicated by the theory. The
concept of a local relaxation length is employed. From inspection of
the flow equations and the behavior of the cumulative lag of the chemical
reaction it is possible to Jjudge without detailed numerical calculations
whether changing one of the flow parameters brings the system closer %o
the "chemical equilibrium" or "frozen reactlon limit.

An investigation ies made of the comparative relaxation times of
the oxygen dissoclation-recombination reaction in relation to molecular
vibrations. A reason for interest in this is that it has usually been
assumed that vibrational relexetion occurs fast relative to chemical
relaxation and therefore may be regarded as being in equilibrium. The
present analysis indicates that it is not generally true that the vibra-
tlonal relaxation +times are short compared %o the time characteristic of
the chemiceal reaction. In this connection the generalization of the con-
cept of chemical equillibrium constant 1s introduced for the case that the
moleculsr vibrations are not in equilibrium. Some values of the relexa-
tion times are calculsted and presented. A method is given to estimate
the effect of vibrational lag when the vibrationasl relexation times are
relatively long.
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INTRODUCTION

In the temperature range between 4500° X and 7000° K and at densities
lying somewhere between 0.1 normal atmospheric density and 10 times the
normal density of the atmosphere, the oxygen of the sir is largely in
nascent form, vwhile the nitrogen 1s mostly
in dietomic form (see, e.g., ref. 1). This
is the state of the alr after 1t has come to
chemical equllibrium behind a strong shock
wave (Mach numbers 10 to 20, depending on
the density of the cold air).

SHOCK WAVE

If subsequently this hot air flows around
& blunt object, 1t will expand and cool and
the oxygen atoms will recombine. The recombi-
nation process 1ls exothermic, giving off 5.12
electron volts for every palr of oxygen atoms
that recomblne. Thus the reaction 1s a source
of heat and will retard the cooling of the
alr. In this paper we study the effect of
the oxygen recombinatlion on the flow. Because
of the difficulties involved in solving the
flow around a blunt body even without chem-
ical reaction, we focus attention on a single
streamtube of the flow. Such a streamtube
is approximated by the one-dimensionsl Fflow
in a channel of varlable cross section. The
crogs section of the flow at first decreases,
reaching a minimum which corresponds essen-
tially to the sonlc line, and then increases
again (see sketch).

STREAM—

The content of the present study is indlcated by the following
outline: First a differential equatlon is derived, whose solution gives
the fraction of the oxygen dissociated as & function of positilion in the
channel. The foxrmal solution is written down, but its numerical evalua-
tion requires knowledge of the oxygen recombination rate constant and
the value of the local pressures and temperatures. The rate constant is
then discussed in the light of theory and experiment. Then the one-
dimensional flow equations with chemical reaction and variable specific
heat are given; a numerical method of solution of the flow equations is
suggested. The three cases, zero reactlon rate, infinite reaction rate,
and the finite rate corresponding to the actual rate constant, are dis-
tinguished and compared in a numerical example. Lasgtly the assumption
of local vibrational equilibrium is examined; some comparisons are made
between vibrational relaxation times and chemical relasxation times and
thelr practical and theoretical significance gppraised.
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SYMBOLS
A cross=sectional area
Amin cross-sectlional ares at throat of channel
8 constant length in the Morse potentisl
aoM sum of the collision radii in collislon between oxygen atom

and third particle

B,Bx,B(y) dimensionless parameter,defined by equation (12)

C number of oxygen atoms, free or combined, per unit mass of
fluid

D dissoclgtion energy of molecule

E energy

e base of ngbtural logarithm

Fr statistical factor on which the recombination rate depends
according to the Eyring theory

g partition function

g function related to enthalpy, defined by eguation (28)

&g

— fraction of states in oxygen-oxygen ground state to be counted
ES:L as attractive

h Planck's constant

B enthalpy per unit mass

k Boltzmann constant

kp dissocliation rate constant
kR recombination rate constant
Ke equilibrium constant

1 length

L length of channel
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mags of an atom; mass-flow rate through channel; also a
constant
mean molecular welght

mean atomic welght

nitric oxide

Avogedro's number

number of particles of 0s per unit volume

number of particles of M per unit volume

number of free oxygen atoms per unit volume

oxygen stom. -

oxygen molecule

pressure

net number of 0O atoms liberated per sec per unit volume

constant length in the formula for the Morse potential

distance between two oxygen atoms

¥
dimensionless measure, Sy
0 No(¥)

tinme, sec

absolute temperature, °K

flow velocity

relative velocity of two colliding oxygen atoms

interaction potential hetween two oxygen atoms

—0
2no5+10

fraction of oxygen atoms which are free,
initial velue of x
value of x corresponding to local chemical eqguilibrium

distance along the flow
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€y average vibrational energy per diatomic molecule =
r'(r) efficiency of & triple collision in producing recombination
4 ratio of change in vibrational energy to change in chemical i
energy, if vibrations are in equllibrium
n(T) average efficiency of triple collisions in producing recom-
bination
A relaxation length for chemical reaction defined by equa-
tion (7)
v vibrational frequency of diatomic molecule
o] density
c constant
T relaxation time of the chemical reaction
Subscripts
at units of atmospheric pressure
o initial value
sl sea level : -
v vibrational -
oo case of infinite rates of reaction

(Thus A, is an approximate value of A where all the
varigbles on the right-~hand side of equation (8) are
replaced by the infinite rate values.)

Superscript

o) cold alr

EQUATTON FOR THE FRACTION OF OXYGEN IN ATOMIC FORM

As hot gas with partially dissoclated oxygen enters a convergent-
divergent channel, the cooling of the gas and the oxygen recombinstion

reactlon will proceed, causing a continuous variation of the fraction



6 NACA TN hL1hh

of the oxygen which 1s dissociated. The purpose of this section is +to
derive and solve the equatlion expressing this varlation. The flow treated
1ls steady and one-dimensional. Catalytic reactlons at surfaces are not
conaidered. The solution obtalned wlll depend on the value of the
reaction rate constant, which will be treated separately in & later
section,

Derivation of Equation

Since the flow 1s assumed steady, so
that the condition at any one station is
independent of time, we can write a time-

e independent conserveation equation for
— free oxygen atoms, Let P equal the

net number of oxygen atoms liberated per
unilt volume and unit time. Then

/":m > >
PAAY =\}rn011~

as (1)

simply states that the number of 0 atoms

libereted per second in the volume element
indicated in the sketch must equal the flux of free oxygen atoms across
EE; surfaces. Here A 1is the cross-sectional area of the channel,

dS an element of surface, T the local velocity of the fluid, and
the number of free oxygen stoms per unit volume, If the flow is
one-dimensional, we have

> > a
fnou dS=a-§(nouA)Av

Defining :c=no/(2n02+no)= ness ratlo of the oxygen in free form to the
oxygen in either the form O or O, (mass fraction of oxygen in atomic
Pform), we can write ngp = Cpx, wvhere C 1is a constent equal to the num-
ber of oxygen atoms, elther in the form O or Oz, per unit mass of fluid.
Then equation (1) becomes:

&x _Ap_ B (2)

dy mC puC
vhere m = pudA 1is the mass flow rate through the channel, a constant.

Now P must be expressed 1ln terms of the chemical rate constant
and the concentration of the reactants. In order to dissoclate, the
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oxygen molecule must collide with another particle which is energetic
enough to break up the oxygen molecule. The dissociation reaction can
thus be written as:
kp
OxM —=>2 O+M

where M 1is the "other" atom or molecule, which activates the oxygen.
The rate of reaction will then be proportional to the number of colli-
sions between Oy and M, so that one can writet

EEQ = rate of dissoclation = kD(T)noanM (3)
diss

where kp is the dissociation rate constant, a function of temperature
only.

The inverse process, the recombination of two oxygen atoms, can only
occur if some means is avallable to carry away the energy that the two
separate atoms must lose to form a stable distomic molecule. Two mech-
anisms for carrylng awsy the energy are conceiveble, a three-body colli-
sion and radiation. The probability that thls energy is given off by
radiation 1s, however, negligibly small: Radiative (dipole) transition
can occur only if one of the oxygen atoms is in the excited D state,
so the fraction of double collisions leading to combinsaition 1s

10°° g 7. Here the 10~° factor is the usual retio of duration

fooo
of collision to the time requlired for radiation; the factor 2

is the probability that one of the two atoms is 1n the b)) state; Z is
a number much less than unity which gives the probability that the molec-
ular state arising from thls colllision deceays to the stable ground state
of oxygen. The fraction of collisions where a third body is present is
found from elementery kinetic theory to be of the order of 5x10 -4 Pats
thus at atmospheric pressure and 5000° X e triple collision is lO‘/Z
more likely than a radiative collision. A general discussion of this
point is given in reference 3, paeges 400 to 402.

In the case of a triple collision, the third particle takes up the

excess energy and momentum. Thus the reaction is8 0 + O + M —>05 + M,
and

1The implicit assumption is that the time between collisions (or more
precisely, the correlation time) is long compared with the time it takes
the Oz molecule to break up once 1t is activated. The latter time may
be of the order of one period of vibration of the molecule or 2x10~1%

-1lo
sec, while the correlation time is larger than L 10 sec. 5o we

300 p

at

expect equation (3) to be valid for most cases of practical interest
(see ref. 2).
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)

= rate of recombination = kg(T)n,2ny (%)

dt -

rec

The form (4) of the rate law states the rate is proportional to the
number of collisions between three bodies, two of which are oxygen atoms.
As will be discussed in detail later (p. L1T), kg(T) has different values
for different third bodies; thus when deallng with a gas mixture such as
air, the right-hand side of equation (4) should be a sum of terms over
different species (Mj, Ms, ...) in the gas. However at the present state
of knowledge of the rate constant this appears to be an overrefinement,
and the form (4) will be used. This form of the law has been veriried
experimentally for the recombination of like atoms in an Inert gas atmos-
phere at room temperature and near atmospheric pressure (refs. k4, 5,
and 6).

According to all theorles of reaction rates the rate constants kp
and kp depend only on temperature, and do not depend on whether or not
chemical equilibrium exists. They are related through the equilibrium
constant Ke(T) = kp(T) /kg(T). The equilibrium constent is a known
function of temperature that can be calculated accuretely from statis-
tical mechanics; it permits us to eliminate elther kr or kp from the
equations. In the following analysis kp has been eliminated rather
than kg.

Since the net number of atoms liberated, P, is the balance between
those freed by dissociation and the number of free atoms bound through
recombination, one obtains with the help of equations (3) and (4) upon
eliminating kp: .

= kgny(ng_Ke-ng®) (5)

We can write equation (5) in terms of x, the fraction of oxygen stoms
vhich are free, and xe, the "local equilibrium value" of x. In other
words, Xe 1s that value of x for which [ngg e(T Y-no®] = 0. Then,
noting that Ke = 20pxe2/(l-xg), one finds:

P = -kp(T)CZp2ny (1= (x-xe) (6)
Putting equation (6) into equation (2) gives _ -
d_x “(X"Xe) (7)

ay A

with
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L. kg (T) Cony < Xe 8)

= l-xe+ X

Equations (7) and (8) gilve the gradient of the quantity x at every
point in the channel, and the integral of equation (T) gives the value
of x at any point y. Equations (7) and (8) are valid no matter how
far the deviation from chemicel equilibrium and regardless of whether
recombination or dissociastion is the dominant process.

Physicel Interpretation and "Local Relaxation Length®

The quantity A defined through equations (7) and (8) is called
the "local relaxation length" of the reaction, and the time T = A/u
1s the corresponding relexation time,

Tn the special case that 1/A and xo are approximstely constant
throughout the flow region of interest, the integration of equation (7)
yielde an exponential decay to equllibrium:

-y
x(y) - xo = [x(0)-xe]Je AN (9)

Here A 1is seen to be the distance required to reduce the deviation

of x from ite equilibrium value to one eth of what it is initislly.
Practically, A and xe may be regarded as constant only when the demsity,
temperature, and veloeclty vary slowly. In addition, A has some depend-
ence on the deviation from local equilibrium, as can be seen by writing
equation (8) in the form

% . kR(TlenM Kl’_‘ie + xe> + (x-xe):l

where it must be remembered that the number of third particles, ny, will
usually have a linear dependence on (x-xe) + Xe. The dependence of l/7\
on (x-xe) can always be safely neglected when (x-Xg)/Xe is small compared
to unity. '

Generally the physical situation is quite different from that
described by equation (9) because the tempersture and density may vary
rapidly slong the streamtube. Thus, for example, 1f the flow begins
(at y = 0) in chemical equilibrium, but the parameters of the flow
(p,T,u) very continuously and repidly along the streamtube, “hen the
system, unable to keep up, will lag further and further behind as the
flow proceeds, In this case, the deviation from equilibrium may increase
rather than decrease wlth distance. Generally the tendency to lag behind
equilibrium and the tendency to decay to local equilibrium exponentially
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are operating simultaneously. Thus the qualitative behavior of the
system (whether it stays closer to the infinite rate case or is nearer

to the frozen case) 1s generally not determined by the magnitude of the
relaxation length alone, but also by the magnitude of the gradient of Xe
and the gradient of A, These gradlents can be expressed in terms of the
gradients of temperature, demsity, and velocity. It 1s the relative mag-
nitude of these gradients to the relaxation length that matters. Whenever
throughout the flow A<< Le, where Le 18 the length within which xe
changes by a factor _of the order of one eth, the flow mey be regarded as
being in chemical equilibrium in the region of length Le. Deviations
from equilibrium can be neglected in a channel of length I if every-
where A<< L, Lg. On the other hand the flow is locally frozen when
K/Le >> 1; 1t can be treated as frozen throughout & channel, if every-
where K/I.>>'l. The more precise and complete criterie come from
solving the differential equation for x. This will now be done.

Solution of the Pifferential Equation

Equation (7) together with equation .(8) expresses the conservation
of oxygen atoms. In principle these equatlons should be solved simul-
taneously with the other equations (such azs mess and energy conservation)
which the channel flow must satisfy. Although such a solution will be
very tedious, it is always possible by numerical means if the function
kR(T) is known.

However, an approximation to the solution is obtained by an itera-
tion procedure which begins elther with frozen flow or equilibrium flov.
Here we shell for the sake of being definite deal only with the procedure
beginning with chemical equilibrium. In this procedure one evalugtes the
factor 1/N at the values p_, Ty, Up, a8nd X, corresponding to the case
of the reaction always being in equilibrium during the flow (infinite
rate). Similarly xe can be replaced by X~ in equation (7). The dis-
tinction between xo and %, 1s a subtle one: x, 1s the equilibrium
fraction of free oxygen atoms for the temperature distribution existing
in the channel whatever the reaction rate; x, 1s the special value
of Xe +Wwhen the reaction rate is infinite. By this replacement 1t
becomes unnecessary to solve equations (7) and (8) simultaneously with
the other equations describing the flow, but one may first solve the flow
for local chemical equilibrium, ignoring equation (7), end then use the
result to evaluate equation (8) and integrate equation (7). Let us call
the approximaste solutlon obtalned thusly x(1).  Then the error in x
introduced by this espproximation cen be shown to be

x - x(2) 2 nZ:O (—7\ %)n 8(y)
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where
8(y) = (xe-%0) + 7\—;} [x(2) -x,,)

is the error in first order. An upper limit to & may be calculated by
evaluating xe and A at the temperature and density corresponding to
chemically frozen flow.

In the present approximation (i.e. , replacing x by x(l)) equation
(7) is 1linear and the formal solution can be written immedistely. This
solution, which is the exact solution of the equation, '

ax(®) - [x(3) ]
dy Ao

is (see Appendix A):

. X00(0)
(1) (3) = 2o(m) + eSO [x(0)=x,,(0)] + &5 f S axy, (10)
Koo (7)

J
where the quantity S(y) 1s defined by S(y) Ef ._i'l'..., end S* 1is
0 AL¥M)
the function of X, which at every point is nmumerically equal to S(y).
If one inverts the function x(y) to obtain y(x.), then

S*(%0) = S[y(x0) 1+

The last term in equation (10) vanishes when temperature and density
(and therefore x,) are constant along the flow. In this case it is seen
that only the exponential decay term remains. On the other hand, if the
£luid is in chemical equilibrium initially, the middle term vanishes
leaving

0 *
x(2)(y) = %o(3) + e'sfxm( )es (11)

Xoo( )

The solution (10), which is comstructed to be most accurate for near
equilibrium flow, is seen to be exact slso in the opposite limit of frozen
flow (S = 0). 1In practice & ‘and its derivatives are expected to be
sufficiently smell so that (10) will always be a falr approximation.
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Messure for Proximity to the "Frozen Flow" or
"Bquilibrium Flow" Limits

The location of the solution relative to the two limiting cases
("frozen" and "local equilibrium") is with the help of equation (10)

glven by: ©)
- Xoo
e~ [X(O)-xoo(o)+f eS*dxm:H (12)

x(¥) -%oo( )
B(¥) x(0) =x5(¥) %5(¥)

x(0) ~x(¥)

Now B = O means the reaction occurs &t an Infinite rate, and B =1
shows the reac ion is frozen. It seems from equation (12) that one has
to evaluate x(1) (y) completely in order to see whether B is closer to
zero or to unity. However, for some spplications this 1s not necessary:
If S(y) << 1, it follows from equation (12) that B(y) is near unity.
This 1s a precise statement of the fact that 1f the relaxation length

1s long compared with the dimensions of interest, then the zero-rsate
approximation is valid.

Another special application is to the flow leading from the region
near the stagnation point of a blunt body around the edges to the sides
of the body. 1In this case the reactlon is expected to be in equilibrium
at the Initisl point, taken in the stagnation re <?n Then it is clear
from equation (12) that B has the property e-S=BS1. Further B(y)
can be glven a simple geometric interpretation: It is the ratio of the

x(0)
two areas L/n eS* dx, and eS[x(0)-x,(y)]. As 1s to be expected from

Xeo(¥)
the earlier discusslon, the value of B depends on the shape of the

function S¥(x.).
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In the 1llustrative sketch above, the area of the rectangle enclosed
by the heavy solid line represents eS*[x(O)-xw], and the total area under
one of the alternative dotted lines (which represent different functions

¥o(0)
s¥*y is b/‘ eS*3x,. The extreme shapes 4 and 1 clearly correspond
Xeo(¥)
to B sapproaching e=® and unity, respectively, For any convex shape
such as 2, as well as for the straight line 3, one has 1/2<B< 1l. In
the laet section use will be made of equation (12) to discuss the effect
of body size and density on the solution.

The quantity B does not tell us whether both limiting cases are
a good spproximation or if they are both poor - it only tells of their
relative merit. A more complete specification of the situation is
obtained if the two parameters

%(¥) ~%oo(¥) x(0) -x(y)

Xoo(¥) %o = x(0) (23)

Ay =

are employed. They represent the percent deviation from each of the
limiting curves. They are related to B through:

5-[1s %]'1 (14)

THE RECOMBINATION RATE CONSTANT

This section is concerned with a detalled evalustion of knowledge
concerning the recombination rate constant, a parameter upon which the
flow depends. The resder who 1s not concerned with this aspect of the
problem is invited to skip to page 21.

At present there are no direct measurements available from which
one can obtain the oxygen recombination rate kR(T), for the temperatures
of interest. However, considerable careful work (refs. L, 5, and 6) has
been done 1n measuring the rates of recombination of other diatomic gases
(Iz, Brz) at room temperature in the presence of an inert gas. Recently
a few results (refs. T, 8, and 9) have been published for I, and Brp
at temperatures between 1000° X and 2700° X in e shock tube. It was
found that the recombination rate for these halogens is smaller at high
temperatures than at low temperatures.®

2After the calculations in the present paper were made, a shock-tube
experiment using alr was reported (ref. 10). The author (S. Feldman)
interprets the experiment to ylield & lower limit for the recombination
ra.tesE which are about ten times larger than the ratee given by equa-
tion (21).




1k NACA TN 41k

In order to interpolate or extrapolate from experimental results
for one tempersture to different temperatures or to a different dlatomic
gas or to different inert gases, a theory and some understanding of the
mechanism of resction is necessary. No altogether satisfactory theoxry
for the oxygen recombination rate constant exists. There are, however,
at least three methods available for estimating a rate constant from
theoretical considerations. The three methods are (1) application of
collision theory of chemical reactions, (2) application of the general
theory of "absolute® reaction rates due to Eyring and co-workers (here-
after simply referred to as the "Eyring theory"), and (3) a method devel-
oped by E. Wigner specifically for the combinatlon reaction. Since each
of the three theories can make a contribution to our understanding of the
reaction, some comments are made about each approach; we finally use
Wigner!s theory to obtain a numerical value for the rate constant. Atten-
tion will be focussed on the temperature dependence of the rate constant,
because predictions based on the three theories give essentially different
tempereture dependencies 1f the ususl approximations are made in applying
the theories. This 1s graphlcelly illustrated in figure 1. The graph
will be further discussed at the end of this sectlon. The disagreement
between the theories mey be due to the neture of the approximations made;
it 1s possible that the rigorous calculstion by Eyring theory, and further
refinement of collision theory, would yield results in sgreement with an
exact calculatlion by Wigner'!s theory.

Collision Theory

The basic ides of collision theory (refs. 2, 6, and 11) is to count
the number of recombinations by counting the number of triple collisions.
Some arbitrariness comes in deflning the effective radli of the colliding
particles. This is resolved by approximeting the atoms by hard spheres
whose effective radii are taken to be the range of the Interatomic forces.
Experimental data such as viscoslty measurements or spectroscopic meas-
urements are often used to determine these radii (see ref. 12). Some-
times experimental results are used to determine an efficiency factor,
that is, the number of reactions per triple collision. This adds another
element of incompleteness to the theory. The advantage of collision
theory 1s the simpliclty and easy visualization of the concepts employed.

If the duration of the collision is assumed to be inversely propor-
tionel to the relative velocity of the atoms before collision, then a
rate constant of the form kR(T) = constaﬁf is obtained. On the other
hend, if this duration is assumed to be a function of only the inter-
action of the two atoms, one obtains kR(T) = const T. But no matter
which way the duration 1s calculated, if the efficlency factor is regarded
as & constant, the rate constant increases with temperature and disagrees
with the iodine and bromine experiments.

A serious shortcoming in the collision theory formulation lies in
the neglect of the fect that the efficlency of a triple collislon 1n
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leading to chemical reaction is a function of temperature. Let 7(T)

be this efficiency factor. Then kR(T) = const q(T); T or

kp(T) = const n{T) NT. It is of interest to get some idea as to the
direction and the extent by which the introduction of 17{T) modifies the
rate constant, so a very crude estimate of the efficiency of a triple
collislion is made in Appendix B. The efficlency factor is found to be
the position average of I'(r) where:

v(r) >
Mr) =1- e.-ﬁ—{l+:f%)-+%[}—r]%l] } (15)

Here V(r) is the value of the interactlon potential between the two
oxygen atoms at the point (r) where the triple collision is taking place.
The dependence of I' on 1/T 1is very strong when V/kT << 1 (when T
is close to zero), and becomes weaker as V/kT (and TI) increases. The
limiting forms are:

3
1/ VvV . v
I' = I'l(r) =-g EE- 3 E<<l (168.)
LV v
F=P2(I‘) =l--2-(-]§l]'_'> e kT%l H -k—T->>l (16b)

Formula (16a) applies for large r where the potential between the two
oxygen stoms is very weak, and (16b) applies whenever the triple colli-
sion occurs within the central part of the Morse curve. The value of
n(T) is the appropriate average over the quantum mechanical states of
the two oxygen atoms of:

r2
IV<O r(x) v(r) ax (17)
[og ==
V<o v(zx)

In the averaging process, equation (17), each volume element is
regarded an equelly likely site for a triple collision, except for a
factor dr/v(r) which measures the time spent in the region dr during
a collision. Note that for equation (16a) the multiplicative factor
r2/v 1s relatively large and for equation (16b)} it i1s relatively small.
The different states to be summed over arise from different relative
orientations of the angulsr momentum vector, which are possible between
two atoms in their 5P state.
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Since n(T) 1s an aver-

v(r) age of I'(r), it will always
decrease with increasing
A temperature because TI(r)

does. Just how rapidly it
decreases will depend on
Fo f I3 the detailed shape of the
0 > I potential. To illustrate
these remarks consider the
simple potential shown in
the sketch; there Iy and '
are independent of r. IT
Vo/kKT >> 1, and V,/kT <<1,
then by the averaging pro-
cedure of equation (17)

3
v
n(T) (l-a.)I‘1+ct.I‘2~ 6 &) +0

where

V2 |- i 1+j‘75 O

r8-rs3

leading to

3
kp(T) = const Eég ZT-—1> + a| NT (18)

Equation (18) indicates that the efficiency factor could modify the
simple collislon theory sufficiently to change a rate constant with a
positive square root temperature varlation to one which decreases with
increasing temperature, but in any case the modification will be in that
direction. '

A further small effect arises from the fact that at low temperatures
the effective collision dlameter on which the constant in equation (18)
depends i1s not gquite constant. It is shown in Appendix B that = factor

proportional to T 2 is introduced into the recombination rate at low
temperature on that account. Thus also this factor tends to reduce the
positive temperature coefficient which simple collision theory would pre-
dict. Another approximation of colllsion theory (not further analyzed
here) 1s to replace the duration of the collision by some average value,
not taking into account the relative angular momentum of the two atoms.
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A collision type theory which sttempts to take these various effects
into account properly would require an integration over two velocities,
two impact parameters, and ome spatial angle. The region of Integration
would again be given by equation (Bl). No such integration will be
attempted here but, as will be seen later on, Wigner's theory does in
effect just that, although using a language rather different from
collision theory.

Eyring Theory

The approach used by the Eyring theory (see refs. 13, 1k, and 15)
is to diagram the total potential energy of the three atoms as a function
of thelr relative posltions. The diggram tekes the form of an irregular
surface similsr to a system of mountains and valleys; the initial rela-
tive poeition and velocity together with the interatomic forces cause
the three atoms, represented by a point on the dlagram, to move in a cer-
tain way. If the appropriate coordinate system is used, the motion of
this point 1s identical with that of a mass point rolling around under
the action of gravity wilthout friction in the corresponding mountain
range. The combined state (0z) 1s represented by a certain valley, which
is usuelly reached via a mountalin pass. When the three atoms are in the
particular relstive position to each other, which 1s represented in the
diagram by a point in the neighborhood of this mountain pass, the group
of atoms is referred to as an "activated complex"; before two oxygen atoms
can combine, they must be part of an activated complex.

According to the theory the rate constant is then seen as the pro-
duct of a statistical factor F' giving the concentration of the acti-
vated complex, and the transmission coefficient k giving the probabllity
that the activated complex will decay into the combined molecule plus
third particle, kR(T) = kFt. The activated complex is defined only for
reactions requiring the addition of an activation energy; thus for two
oxygen atoms which approach head-on, it cannot be defined because the '
potential energy curve has no maximum so that there is no activation
energy requlred. However, generally two colliding oxygen atoms will have
some relative angular momentum, and hence & centrifugal potential which
ylelds a slight maximum in the potentlal energy curve. This fact permits
the calculation of the recombination rate within the framework of the
Byring theory. We shall not attempt the complicated task of calculating
the transmission coefficlent for the oxygen recombinstion reaction. How-
ever, some rether general observations can be made from Eyring's theory
about the relative behavior of different third bodies:

1. An inert third body is much less effective (k much smaller)
in bringing about recombination then a third particle, such as an
oxygen stom, which can form a chemical bond with one of the reacting
atoms.

2. The statistical factor F' has a different temperature
dependence for different third bodies. If the third body is a
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hard sphere F+~nJT, the collision theory result; but if there exists
any - however slight - attractive force between the third atom and
the reacting atom, then the temperature dependence lies between

Fr~T and F*~(T)3/2 at the temperatures of aserodynamic interest. If
the third body is a diatomlc molecule, such as Op or Ny, then the
temperature dependence lies between F'~(T)2 and F'~(T)5/2, The rea-
son for these differences is that F' is proportional to the parti-
tion functlon of the activated complex; in the hard sphere case the
activated complex ig Just a diatomic molecule, in the active atom
case 1t is a triatomic molecule, and if the third body is diatomic,
the complex consists of four atoms. The more atoms the complex
involves, the larger the number of internal degrees of freedom and
the sharper the dependence of the partition function on temperature.

3. One cannot assert that the recombination rate constant will
have & temperature dependence identical with that of Ft Ybecause «
may vary with tempersture, However, one does not expect the varia-
tlon of k with T .to be so different for different third bodies as
to wash out altogether the differences in tempersture dependence due
to differences in . F'(T), nor would it be eXpected that k decreases
sufficlently rapidly as T Increases to produce a rate constant with
a negative tempersture coefficient when the third body is a diatomic
molecule,

Wigner!s Theory

Wigner (refs. 16 and 17) regards the three particles needed for a
recombination as a member of & canonical ensemble (each member is three
such point particles in a box, see ref. 18), and represents it as a )
point in (twelve-dimensional) phase space, where the 12 dimensions are
the relative positlons and momenta of the three particles. A certain
region of thls phase space represents the combined state, while the rest
of the space represents the separated state. He then asks (and snswers)
the question: TIf initially the system is in ah uncombined state, what
is the probability that after & time + it will be in the region repre-
senting the combined state? He assumes that the particles follow the
classical laws of mechanlcs and thelr interaction potential is a function
of their relative position only, having no explicit time dependence
(adisbatic hypothesls). These same assumptions also sppear in the Eyring
theory. For more detailed discussion of the assumptions underlying the
theory and their validity see references 16, 17, and 19. For the case
in which the third body is an inert stom, so that its interaction with
the oxygen 1s that of a hard sphere, he obtains an especlally slmple
upper limit for the rate constant:

_ &g aﬁaaOM

=s M dr(rS+2amr2) V(r) (19)
Yei JomeT ~/;r<o o i
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where r 1is the distence between the oxygen atoms, agy 1s the sum of
the collision redii for interaction between the oxygen and the third body,
end V(r) is the interaction potential between the two oxygen atoms, The
fraction 3s/§gi is required to include the fact that the interaction

between two oxygen atoms in theilr ground state depends on the relative
orientation of thelr anguler momenta. If seversl attractive states exist
as ls the case for oxygen (see, e.g., ref. 3), the really correct proce-
dure would be to add several terms of the form (19), one for each attrac-
tlve state. But without considering the detailed shape of each of these
potentials, one can estimate gs/Egi on the basis of the formal Wigner-

Witmer rules (ref. 3). Tt is noted that the values of g; are constants
and depend neither on temperature nor on the nature of the third body.

The only dependence of equation (19) on the nature of the third body
is through the agy; the rate 1s larger, the bigger the inert atom. This
is in quantitive agreement with experiments on I; and Bry in different
rare gas atmospheres at room temperature. Further equat%on (19) predicts

& temperature dependence for the upper limit I(T)~(T) 2. That it is
only an upper limit arises in the following way: In Wigner's derivation
of the rate constant, 1t is necessary to define the region of phase space
corresponding to the combined state not only for the case that the third
body is far away, but alsoc while all three are in collision. Wigner

shows that the correct definition of the latter region is the one which
makes the rate constant a minimum, subject to the boundary condition that
it reduces to the correct region when the third body is far away. Not
having any simple procedure for obtaining the shape of this region, Wigner
uses a simple and reasonable formule for the shape of the region; this
will generally give too large a value for the rate constant. Moreover,
the error introduced by using the wrong region increases with increasing
temperature; consequently, 1t 1s expected that kr dJdecreases more rapldly
as the temperature increases thsn equation (19) predicts (i.e., more
repidly than 1/NT).

For the present purpose, equation (19) will be used with aom = 2.60 A
and & Morse potential function for V corresponding to the ®Bz (ground)
state of 05:

_ 2(r-Rg) _ (r-Ro)
&

Vv(r) =D |e a ~-2e (20)

with
a=0.373A, Ro=1l.204A, D=5.12e.v. =59,000° K
The fraction gs/Zgi is estimated from the Wigner-Witmer rules to be

1/10. As was mentioned earlier, such an estimate involves some
uncertainty.
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The resulting rate constant is, if the third body is inert,

“2
x5 (T) = }E-J;x 10782 -———-m°l;;les> sec™® (21)

The corresponding relaxation times for various temperatures snd densities,
vhich will be discussed in a later section, are shown in figure 8.

Comparative Discussion of the Three Theories

From collision theory a mechanical model or plcture of the reaction
is obtained, but the theory is, in some respects, too incomplete, and in
practice, requires the use of experimental data for application.

From Eyring's theory some informetion is gained about relative rates
with different third bodies. The difficulty in epplying the Eyring theory
to the present problem lies in the difficulty of calculating the trans-
mission coefficient. The probebility that the activated state leads to
reaction is the probability that the particles end up not only in &a cer-
tain relative position (the two O atoms together), but also with cer-
tain relative momenta (the third particle carrying off most of the
kinetic energy). For this reason Eyring's use of a potential energy
dlagram in configuration space is not the most natural way to proceed,
but rather the use of phase space is indicatg@_where_momenta and coordi-
nates enter in symmetrical fashion. Also the use of the concept of - T
activated complex seems not really suilted to the present problem, which L
involves practically no activation energy. k -

Wigner, by working in phase space and avoiding the introduction of
any activated complex,can express the rate constant in terms of an inte-
gral, which he evaluates for the case that the third body is a hard

sphere. The resulting rate constant varles as T—a; the fact that the
rate decreasses as T increases is at least in quelitative agreement with
the aforementioged Is and Bro experiments,zglthqugh the_da?a is best

fitted by a T 2 dependence. The modifications of this T 2 law which

would result 1f the third body were a distomic molecule rather then a

hard sphere are not clear from Wigner's integrals. The earlier discus~ -
sion, in terms of Eyring's activated complex, suggests that a less nega- ' T
tive or perheps even a posltive temperature coefficient would result.

In the present analysis we shall make the simplest assumption, namely
that all third bodies act as hard spheres, rather than assuming an
activated complex.

These arguments led the author to select for use in this analysis
the theory of Wigner. The reasons for this cholce are:

1. Of the three methods his is the most naturally sulted to
the problem,
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2. The integrals obtalned can actually be carried out, at least
for s hard sphere third body.

3. What experimental evidence there is, supports a negative
temperature coefficient, and Wigner's rate constant gives & negative o
temperature coefficient, at least for a hard sphere third body.

This concludes the criticel evaluation of the three theories. It
is of interest to look agaln at the graphical presentation (fig. 1) in
the 1ight of the above discussion because some more definite statements
can be made: For oxygen in an inert gas presumably curve Q) is close
to the correct form and C) is a bad approximation. For oxygen in an
atmosphere of Ny the curve is expected to have a shape intermediate
between g? and (3). The absolute value of curve @ is obtained from
equation (21). No absolute values for the curves @ and are calcu-
lated; they are arbitrarily taken to agree with (@ at 1000° K, permitting
a comparison of the temperature dependence. These curves and their uncer- o
tainty serve to polnt up the need for further experimental measurements
of the rate constants.

FL.OW WITH CHEMICAL REACTION

The Equations

Before one can integrate equation (7) the results (21) for the
recombingtion rate constant must be inserted into equation (8) and A
must be expressed in terms of x and A, rather than temperature (T),
density (p), and velocity (u). There is then obtained the following
equation for x in terms of A, for eny specified channel shape A(y):

dx dy X-Xe
= _ .Y _ < 22
da dA A (22)

This equation is to be solved simultaneously with the remaining flow
equations to describe the flow completely. There are six variables:

Xe, X, T, p, P, and u; hence, five additional equations are needed. These
are given below. The equations allow for chemical reaction and varisble
gpecific heat but neglect transport phenomensa:

puA = m (mass conservation) (23)
wvdu+ & =0 (momentum conservation) (2k)
o

udu+ dd =0 (energy conservation) (25)
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% = (1+Fx) %% (equation of state) (26) .
Xe® o
= 2C 2
K (T) ° T (27)

The quentities M and T are defined by
i 2 2

where

number of moles of series i _ bi
total number of moles in cold air Enko

H
]
1

and Mj _1s the molecular weight of each specles. For oxygen in an inert
gas, M, f and C are constant. However, for air both C and f Qepend
on the concentration of NO and thus are functions of temperature, but :
C/f is independent of the variable concentration of NO. The equilib- o
rium constant Ke(T) and the enthalpy H are computed from statistical
mechanics; these functions have been tabuleted by various authors (see
refs. 1, 20, 21, 22, 23, and 24). “

Method of Solution .

Rather then attempting to solve all six equations ((22) to (27))
similteneously, one can simplify the calculation by dealing with the
frozen flow or equilibrium flow limit, depending on which is expected
to be nearer to the case of interest, and then correcting for the finite
rate case:

For the frozen flow 1limit, one obtains the result by solving simul-
taneously the four equations ((23) through (26)) using x = xo = const
in equation (26). This differs from the well-known one-dimensional flow
without reaction only in that care must be taken in evaluating the
enthalpy H. The enthalpy at any point is obtained by adding to the
initial enthalpy the change in enthalpy of each constituent due to the _
chaenge of temperature, but not adding enthalpy change due to a heat of .
reaction, since no reaction is permitted. (See, e.g., the tables of
refs. 21 and 22.) Then equations (27) and (22) can be solved in that
order. Of the six verisbles, only x 1s sensitive to changes in the
shape of the channel. If a higher spproximation to the flow 1s desired, -
one then inserts the x(A) obtained from equation (22) into equation (26)



NACA TN L1hh 23

and, keeping p/p fixed, which 1s essentially equivalent to lgnoring
corrections to the enthalpy, obtains a new temperature at every point.

In the other extreme case, equilibrium flow, one solves equations
(23) to (27) simultaneously, replacing x in equation (26) by x,. The
solution (11) for (22) can then be employed. If a higher spproximation
to the flow is desired, one inserts the resulting x(A) - rather than x, -
into equation (26) and obtains a new T(A).

It is interesting to note that in both limiting cases, the properties
of the flow (p, p, T, u) are & unlque function of the cross-sectional
area A, regardless of hov slowly or rapidly the cross section varles
along the channel. However, the corrections to the flow in the finite
rate case are not unique functions of A, but through equation (22)
depend on the channel shepe, dA/dy; so for a finite reaction rate the
flow is different for a channel which contracts (or expands) very sud-
denly to a certaln cross section than for one which contracts (expands)
slowly to the same cross section. This dependence on the linear dis-
tance arises because a characteristic length, the relaxation length, has
entered into the problem.

The simultaneous solution of equations (23) through (27) needed for
the equilibrium flow is accomplished as follows: In analogy to the case
of constant specific heat we introduce into equation (25) instead of =,
the variable g defined by:S

H = —2-

£ (28)

hol o]

In general, g does not represent the ratio of specific heats. We then
eliminate xe from equations (26) and (27) and u from equations (2k)
and (25). There are then obtained two equations involving only p, T,
and p and one can find p(p) and T(p) from them numerically. The
equations are

P g
d_ 4
»__&t Jopr i (30)
Po (&-1),

SThis is the ¥! used by Gilmore, reference 1. He gives some numer-
ical values for sir.
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Whenever g 1ig constant along the path, equation (30) represents a
polytrope:

g
2 (2 o
2 (po (308)

Usually g is a slowly varying function, and equatiom (30a) is a useful
first approximation. The procedure used in the present calculation was
to obtaein the first p(p) from equation (30a), end to introduce this
result into equation (29) to find T(p). Then if it was found that
g(p,T) did_indeed vary along the path, we fitted the slowly verying -
funetion g(p) by a linear or guedratic function, thus'avoiding numer-

ical integration of equation (30). This procedure converges very rapidly.

Once p(p) and T(p) are known, one readily obtains without further iter-

ation u(p), p(A), etc., from equations (23) and (24). In numerical

evaluation the most inconvenient feature of this method 1s that 1n equa-

tion (29) on the left-hand side one is subtracting two large numbers from :
egch other to obtain a relatively small one and thereby losing some accu-~ -
racy. On the other hand & helpful feature 1s that the slopes of the

right-hand side of equation (29), plotted as ‘e function of T, and that

of the left-hand side are very different. :

As was noted in an earlier paragraph, it has up to now been assumed
that the change in enthalpy dH in equation (25) is the same for flow
with finite reaction as for the limiting case (equilibrium oxr frozen)
on which the calculetion is based. Now we show how the veristion in 4H
may be evalusted. The enthalpy H (or the function g in eq. (30)) must
be recalculated with the new x(A) and T(A). This correction will have T
some (however small) effect on all the flow variables, In computing the
enthalpy, 1t must be remembered that H depends on T, p, and x. This
contrasts with the equilibrium sltuetion, in which H depends only on T -
end p., To compute H for air with the help of available tables, it is
useful to replace the actual history of the system by a different history, -
&s 1s indicated in the accompanying sketch. This 1s permissible because H -

Actual history, X To find H or g at the

point AP’ the history

) is teken to follow either

Computed history the equilibrium curve or

e (horizontal) line on

which no reaction is —
teking place.

—f—————— —— —
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is a point function of T and x, and so it is.independent of the history
of the gas expressed in terms of these three varlables. With this modi-
fication of the enthalpy defermined, we repeat the solution and by this
iteration obtain the correction to the flow varlables,

The enthalpy correction tends to be small not only because it is

proportional to [x(l)-xal, but also because it is due to two partially
cancelling effects: A change in T eand a change in x in the opposite
direction. These changes have opposite signe because p is kept fixed.
The resulting corrections to the other flow variables for a given cor-
rection t0 H are smaller the higher the temperature and flow velocity.

The modification of the flow variables due to the correction of the
enthalpy was found to be negligibly small in the example which follows.

Exemple

As a numerical example the following initial conditions were taken
for the channel flow:

Zo _ 7.80 ,

Py

Zo

a1

= 1.47

Lo _0.336, T,=530 k
Ps1

where p_q and p., are the stendard pressure and density at sea level
and aj 8 the free-stream velocity of sound at an altitude of 25 km,
These initlal conditions correspond to the conditions of air having come
to thermodynemic equilibrium behind a normal shock wave of Mach 1k4.7 at
an altitude of 25 km. For the finite rate case, the length of the
channel wag taken to be 2.5 meters.

Equations (26) and (27) were used with M = 28.8, T = 0.000765, and
C = 0.22 ny, /My, Thus the concentration of NO 1s neglected. For the
rate constant equation (21) was used; the linearized version of the rate
equation (7) was assumed so that the solution (10) could be employed.
In figures 2 through 6 the results are plotted as a function of cross-
sectional area. This area has to decrease sufflcilently from its initial
value so that the flow can reach sonic veloclties; after that point the
cross sectlon increases agsin.

It is seen from the graphs that for the frozen case (zero rate),
the contraction of the streamtube at the throat is much less than for
the Infinlte rate case, This shows that the oxygen reaction can change
the shape of streamtubes in the flow. The effect reflects the relatively
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large equilibrium flow velocity at the throat compared to the slower
frozen flow velocity. In the equilibrium case the enthalpy change between
the Initial point end the throat is comparatively large, being due to
both thermal and chemical changes; the large enthalpy change requires

& large Increase 1n velocity, hence the greater contraction of the stream~
tube in equilibrium flow (see sketch). -

e In addition, the tempersature,

/Equmbrlum Flow density, pressure, and velocilty are
shown in-the figures to be lower for

frozen flow than for equlilibrium

flow when the flow is supersonic

and when the area ratios are the

Amin

| Frozen Flow seme, Of course the variable x,

| the mass fraction of free oxygen,

| is always greater in the frozen

y — case (x5) than in the equilibrium
case (X) -

The initial values of p, u, T, p, and x are taken to be the same
for the zero rate and equilibrium case. From figures 3 and 4 it is seen
that for poth limiting cases the density falls below the free-stream
value long before the pressure does. Although the curves for equilibrium
and frozen flow appear to be very close to each other for both pressure
and density, 1t must be remembered that their absolute values are small
when A/Amin 1s large and, consequently, the percent difference between
the two cases may be considerable. In figures 2 through 6 all the curves
have an infinite slope at the throat. This does not mean that the gra-
dients are especially large in thet neighborhood because dA/dy = 0 when
A = Apiy, and for any reelistic streamtube dA/dy 1s very small in the
neighborhood of Apin. To compute x(A) (fig. 6) a particulsr shape had
to be considered (see sketch): '

A/Ayin = 1.00 + 19.00 tenh 0.0586 (y/2)%, 1=75 e (31)

initial point equilibrium flow

Initial point frozen flow
Throat

[
!

I
R p—
I - —t — — -
!
| |
1

b

TC

T
|

L

Cross section of channel,equation (31}
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This shape has the property that for distances far from the throat

(Iy[ >> 1}, the cross-sectional ares epproaches the constant value

A = 20 Apiy. The vaelue of B(y) turns out to be practically zero for
smell y and lncreases with increasing y. Its value for y = 230 cm
is only 0.20. Thus in this example x(y) stays relatively close %o
xw(y), ag is also seen in figure 6. The first-order correction to T

is shown in figure 2. The enthalpy corrections (for T, p, p) discussed
in the preceding section were found to be small, leading to practically
no change from the infinite rate case.

The comment made earlier about the lag of the reactlon being cumula-
tive can be examined from this example and, for this purpose, figure 7
hag been prepared. Even though the concentration of atomic oxygen lies
relatively close to the infinite rate case, this figure shows that the
percent deviation becomes progressively larger as the flow proceeds.

Having considered & speclfic example, it 1s of interest to consider
the effect of varying the parameters of the problem. One would intuitively
expect that an increase of initisel demnsity would cause the reaction to
stay still closer to chemical equilibrium (decrease the value of B),
because s higher density means more collisions and therefore faster reac-
tions. Also one would expect that decreasing the length scale of the
channel would cause the redction to stay closer to the frozen limit
(increasing the value B). Both these expectations are borne out by the
equations. (Qualitatively this can be seen from equations (8) and (12)
alone; quantitatively density and distance must alsc be traced through
the whole set of equations (23) to (27).) These facts show that one can
simulate the chemical aspects of the flow at high altitude flight by
using a small model at higher densities.

WHEN CAN VIBRATTIONAL RELAXATTON BE IGNORED

In the foregoing amalysis the contribution of molecular vibrations
to the internal energy of the gas has been included. However, it has
been implicitly assumed that the equilibrium distribution of energy
between vibrations and other degrees of freedom exists at all times.

This assumption 1s investigated in the present section. Most of the
results obtained epply to channel flow generally; but some are appllicable
only to a channel flow where initially thermodynemic equilibrium exists;
still others apply to the situation immediately behind a shock wave,
before the gas has come to thermodynemic equilibrium. Whenever a result
does not apply generally, the perticular situation to which it does apply
will be stated.
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Two Alternative Conditions Permitting the Neglect of
Vibrationel Relaxation

In order to find the circumstances under which vibrational equilib-
rium can be assumed without introducing eny significant errors, it is
useful to define (see Bethe and Teller, ref. 21) a relexation length for
vibration, Ay, which 1s the distance over which an initial deviation of = . - -
the vibratlonal energy of the system from its equilibrium value will be
reduced to one eth if the temperature of the gas does not change. This
quantity is the exact snalog to the chemical relexation length A defined
in equations (7) and (8); A glves the distance over which an initial
deviation in x from its equilibrium value will be reduced to one eth,
if the density and tempersture of the gas remain constant.

With this definition one can state in a quantitative way that vibra-
tional equilibrium can always be assumed, 1if the vibrational relaxation
heppens sufflciently fast. Roughly, "sufficiently fast" means:

Ty Ay Ay
- == <<1, o << 1 everywhere (32)

Here I, 1s the distance over which the equilibrium vibrational energy
changes to one eth of its original value. If in (32), much less than is
replaced by much greater than, one has a sufficlent condition permitting
one to regard the vibratlons as frozen. The more preclse conditiomns, .
including cumulative effect, will not be discussed because for the pres-
ent purpose only simple estimates based on (32) are required. These
cumuleative effects are anslogous to those discussed in connection with
chemical relaxation. The first of the conditioms (32), 7v/T <<1, states
that the time scale of vibrational relaxation is so short compered to the
chemical relaxation that, when initlally both are out of equilibrium, the
vibrations will already be adjusted before the chemical concentrations
change significantly. The second statement says that vibrations will
stay near equilibrium if the equilibrium position does not move away
faster than the system's rate of approach to squilibriuvm,.

Short relexation timees for vibrations provide a sufficient condition
permitting the neglect of the effects of relaxation; but.it is not a
necessary condition, This becomes clear if ane considers low temperatures
where vibrational relaxation times become very long; yet one can usually
regard the flow as being in vibrationsel equilibrlium simply because the
fraction of the molecular energy tied up in vibrations is so minute,
that whether vibrations relax rapidly or slowly will have no significant
effect on the flow. Thus there exists a dilfferent, also sufficient but
not necessary, condltion allowing the neglect of vibratlonal relaxation
vhich expresses the requirement that the smount of energy tied up in
vibrations 1s sufficlently small:
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Ay
E << 1 (33)

Here AB, 1is the change of vibrational energy for the case of vanlshing
vibrational relaxatlon time, The quantities AEy and AH are the changes
of Ey and H along & streamtube. When the condition (33) 1s satisfied,
it is quite inconsequential whether the vibrations sre treated as frozen
or as belng in equilibrium. (The basis for the comdition (33) is given
in Appendix C.)

In the remainder of this section these two conditions, (32) and (33),
are discussed in further detail; numerical estimates are made of the
required guantities and applied to practical situations.

The useful concept of Ywibrational temperature" will be employed.
It is defined in the followlng way:

When there exists thermodynemic equllibrium, the vibrational energy
per dlatomic molecule is related to the temperature by

hy
(T) =
EV. eh?V /kT_l

where h 1is Planck!s constant and v is the vibrational frequency of
the molecule., 1In a nonequilibrium situation this relation between vibra-
tional energy and temperature will not hold, but one can &lwsys find a
number Ty such that

hy
ehv/kTv_l
Tt has been shown by Rubin, Shuler, and Montroll (refs. 25 and 26) that
for all the cases of interest here,? the vibrational energy will be
divided among the molecules according to a Boltzmenn distribution, where
Ty plays the role of the tempersture. Thus during the time when vibra-
tionel relexation 1s occurring, the gas is correctly regarded as two
systems (vibrations and the other degrees of freedom) In contact, each
having a different temperature (Tv and T, respectively); T, 1s called
the vibrationsl temperature.

“More exactly, the situation considered by these authors is that of
a system of harmonic oscillators which 1nitially heve a Boltzmenn dis-
tribution corresponding to a temperature T,, and which are contained in
an excess of inert gas acting as a heat reservolr of temperature T. It
is then proved that as time proceeds the system of oscillators continues
to have a Boltzmann distribution, the temperature of which 1s the Ty
defined above. The coupling between the chemical reaction and vibrations
may cause devistions from the Boltzmenn distribution.

€y =
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Numerical Values of Relaxaetion Times

In the considerations concerning chemical relaxation behind shock
waves, it was assumed by earlier suthors (refs. 12 and 21) that the vibra-
tional relaxation times are short compared to. chemical relaxation times.
Recent experimental evidence (refs. 10, 27, amd 28), hovever, seems to
indicate that at high Mach numbers chemical eguilibrium of oxygen is
achieved before the vibrations have become active, so that condition (32)
is not satisfied.

Perhaps an intuitive reason for the earlier assumption is that an
energy exchange between molecules sufficlent to cause dissociation ie
much less likely than the small energy exchange required to produce vibra-
tlonal excitation, and thus the time of relaxatlion must be longer. Here
it must be remembered that the transition probability from Oy molecule
plus M +to two O &atoms plus M 1s proporticnal to the density of final
states, and this density 1s large for three free atoms, whose energles
and momenta are not gquentized. Furthermore, to achleve a vibrational
state with energy nhv from the ground stete, it requires n collisions,
each of which must transfer & quantum hv of energy to the molecule in
question; it requires more such collislons if the molecule loses some of
its vibrational energy in between. However, dissociation may occur in
one step, although its probebility is expected to be higher if the
molecule is in a high vibrational state already (see refs. 27 and 29).

Numerical values for vibrational relaxation times were calculated
by using the harmonic oscillator model (following Bethe and Teller) for
vibrations, and the transition probebllities based on the rather satis-
factory theory of Schwartz and Herzfeld (refs. 30 and 31). Blackmen's
experimental date were used to estimete collision diameters (see ref.
32).

To make some numerical estimates of chemical relaxation times in
air, equation (8) is used together with the recombinastion rate constant
given by equation (21). Above 6000° X it is found that  the chemical
relaxation times are the same irmediately behind the shock wayve (x =0,
dissociation) and during the subsequent expansion process (x > Xe, Trecom-
bination). At the lower temperatures there is some dependence on x.
Thus for 5000° K and lower temperatures two velues are given, the value
for x = O and the one for X = Xg, the latter belng put In parentheses.
The chemicel relaxation times are 8lso expected to be different if the
vibrations are frozen in instead of being in equllibrium. Both cases
are tabulated in adjacent columne below and shown in figure 8.
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T (TP)02 chemical reaction
2
o | Vibrati (Tp) (Tp)
oK fro;anzgs Vibrations 0o vibrations N- vibrations
Ty << 2300° X active

3,0001 10! 7.7 (3.7) 8.1 (4.1) 1.2 ko

3,000 |.01] 330 (125) 330 (125) 1.2 40

4,000} 10| .90 (.45) |1.38 (.69) .29 16.5

4,000 |.0L 12 (10) 25 (20) .29 16.5

5,000 10| .27 (.18) .45 (.30) 17 5.6

5,000 [,01L| .45 1.25 L7 5.6

7,000 10f .015 .056 .15 2.2

7,000 {.01] .019 071 A5 2.2
12,000} 10} .0012 .00T1 A1 5T
12,000 |.01} .0012 .00TL L1 5T
Note: The units for +p are microsecond atmospheres. The unit of p
is normal atmospheric density. The quantity (TD)vibretions 18 inde-
pendent of density or pressure, and (TD)chemical resction &1l8C becomes
insensitive to changes in density and pressure at the higher tempera-
tures.

The chemical relaxation time depends on the equilibrium constant
through xe and equation (27). The frozen relaxation times were calcu-
lated with the help of a generalization for vibrational nonequilibrium
of the usual concept of an equilibrium constant of the 0Op —=> 2 QO reac-
tion. By definition the equilibrium constent is & ratic of concentrations
or the corresponding partition funciions. When the distribution over
vibrational states is thalt corresponding to a temperature Ty rather
than T, but that over other states 1s that corresponding to a tempera-
ture T the naturel generalization fur Ke(T) is:

£,(T)

T (T,) (34

Xe(T,Ty) = 58- Ke(T) ————

where fy(T) is the vibrationsl partition function corresponding to the
temperature T:

£ (T) = (l_e-hv /kcu)'l

For vibrational equilibrium T, = T, while for frozen vibrations

hv /KT, >>1 and £y (Ty) = 1. For oxygen hv/k = 2300° K is the critical
temperature, so that & vibrational temperature near ordinary room temper-
ature leads to fy(Ty) = 1. The evaluation of T for the frozen-
vibrations case also requires that some assumption be made regarding the
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dependence of the recomblnation rate constant on Ty. The simplest, and
not toco unreasonable, assumption® 1p made that kg 1is independent of Ty.
Wigner's formula (21) is used throughout.

In figure 8 the relaxation times are plotted as a function of tem-
perature. The nearly horizontal regions into which vibrational relaxa-
tion times fall are shaded in to point up how chemical relaxation times
(based on Wigner's theory) vary in relation to the vibrations. It is
seen from thils figure or the table that at temperatures in the neighbor-
hood of 5000° K, the vibrational and chemical relaxstion times are of
the same order of magnitude, but that at higher temperatures the chemical
relaxation times are relatively much shorter, and at lower temperatures
they become longer then the vibrational relaxatlon times., In symbols:

v/Ty ~ 1 , when T % 5000° K
t/7y <<1, when T 3 7000° K

If the collision theory recombination rate used by Wood (ref. 12)
is employed, one obtains still shorter chemical relaxation times. The
region in which the two relaxation times are of the same order of magni-
tude 1s of special interest: It suggests the possibility of studying
the coupling of the two processes. This coupling between the two simul-
taneous processes 1s sensitive to some detalls of the reaction mechanism,
which otherwise would elude observation. For this reason further study
of this coupling 1s comnsldered to be of interest.

The relatlive numerical values of T and Ty have some implicatlons
for the flow immedisately behind a strong shock, as well as for the flow
of air around the cormer of g rapidly moving blunt body. We comnsider
the former case first.

Behind shock waves the above result, that at higher temperatures
chemical relaxation times are shorter than vibrational relaxation times,
appears to be borne out by the unpublished results of Resler's experi-
ments with shock tubes (ref. 28) and also in line with corresponding
experimental results for the dissociation of nitrogen obtalned by the
use of strong shock waves (refs. 27 and 29). Both the vibrational and
chemicael relaxation produce rapid cooling of the (translational temper-
ature of the) gas and consequently a rapidly sinking equilibrium value
for the degree of dissoclation Xxe &and an increasing chemlcal relaxation
time. As is suggested in the sketch, 1t is possible that x does not
increase monatonically behind the shock wave but reaches a maximum and
then decreases., Thils occurs as follows: At first the rate of approach
to chemical equilibrium (eq. (7)) is rapid because it is proportional to
(x-xe) end because the temperature 1s high. As the reaction absorbs some
of the thermal energy, the quantities x and X. approach each other.

SThe only such deperdence on Ty would arise 1f the Third body in
& triple collislon were a molecule and its internal motion made it a
better or worse energy absorber.

jlil
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If the vibrational relaxation time

is relatively long, the vibrations
will gbsorb thermal (i.e., rendom
translational and rotational)

energy, even after x and Xe are
very close to each other, and cause

a continuing temperature decrease

end decrease of Xe. This permits X
the two curves x(y) and xo(y) to
intersect with a resulting mesximum

in x(y). The experiments of

Resler indicate such & maximum, -

Now in the expansion process,
such as the channel flow considered here (see also ref. 8), the situation
differs from the flow behind the shock in that vibrations are initially
overexclted and the gas overdissoclated, while the other extreme occurs
Immediately behind the shock., In the analysis of this expansion in the
earlier part of this paper it was assumed that the vibrations are in
equilibrium throughout the flow. Yet, since 7ty 1s not smaell compared
to T, clearly the condition (32) is not satisfied. The Justificetion
for neglecting vibrational relaxation must then be based on the condi-
tion (33) that the vibrational energy is sufficiently small.

Application of the Sufficiently Small Vibrational Energy Condition

In Appendix C it is shown that a practically equivalent way of
stating the condition (33), that the chenge of vibrational energy be
small compared to the change in enthalpy, is:

A
n= > E'V'D <<1l (35)
5 KAT + E'Ax

This condition states that the change of vibretional energy is small
compared to other changes in the enthalpy.

For the specilal case of flow immediately behind a shock wave, the
vibrational energy is initially zero, so that Aey = €y 1s the totsal
energy per molecule received by the vibrational mode. From the analysis
of Bethe and Teller 1t is known that the temperature behlnd & shock
decreases, giving energy to the vibrations and the reaction. This
exchange of energy would mske 17 = 1, so that condition (35) is certainly
not fulfilled. Aectually mn is usually even larger than unity because
the slowing down of the flow behind the shock front reduces the decrease
in thermal energy (AT) which would otherwise occur.
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It 1s quite different in the one-dimensional channel flow In which
one hag vibrational equilibrium initially. In this case
Aey, % KATy s KAT,  The equality pertains when there is no vibrational
leg, so that AT, = AT. For oxygen D/Sk % 12,000° X; the condition (35)
becomes S :

L.
n

o1

+ 12,000 &£ >>1
AT

In the particular example shown 1ln figures 2 through 7, one sees from
the graphs that Ax/AT ~ 1/5000° K; hence 1/n ~ 5 and the condition (35)
is fairly well satisfied. ;

A simple estimate of the enthalpy in this example indicates that
the failure to consider finite vibrational relaxstion times causes one
to overestimate the changes in enthalpy by about 1 or 2 percent. From
equation (25) it then follows that the flow veloeity changes a little
more slowly then in the equilibrium case; the corresponding changes in
the other flow variables can be easlly obtained from equations (23) to
(27). The changes are so small that they could hardly show up on figures
2 through 7. -

CONCLUDING REMARKS

In conclusion we summarize the status of the problem of one-
dimensional channel flow in the presence of recombination and dissocietion.

In principle, one only has to know the rate constant kR(T), and
one cen, by numerical means, integrate forward the exact rate equation
together with the flow equetion, and all varlables of interest will be
given by the solution (see egs. (22) to (27)). If another reaction is
occurring simultaneously, another variable will be introduced, analogous
to the mass fraction of oxygen in atomlc form used for the dissocilation-
recombination reactlion, and en additional equation must be considered.

The simultaneous numerical evaluation of the flow and the rate of
resction is not necessary 1f the deviation from local chemical equilib-
rium is not large. In this case one can compute the relaxation length
(see eq. (8)) from the infinite rate approximation for the flow; then
the solution for the mass fraction of oxygen dissoclated takes on &
relatively simple form, permitting numerical evaluation of the lag of
atomic oxygen concentratlon behind equilibrium. This lag leads to
readily computed modifications of the flow variables. One can express
the amount of lag in terms of a parameter, whose numerical value identi-
fies a flow which is essentially frozen or essentislly in equilibrium.
The chemical aspect of flow around a large body at low densities mey be
simulated by increasing density and decreasing slze.
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In particular it is noted that the shape of streambtubes, for given
initial conditions, will be a fumctlon of the amount of lag behind chem-
ical equilibrium. When the equations are applied to flow similar to that
in a streamtube beginning near the stagnation region of a bluff body and
leading around the body, it becomes apparent that the contraction of the
streamtube in the sonic region is considerably greater when the reaction
rate 1s very fast than when 1t is very slow.

In experiments involving flow, the rate constant kXg(T) is not
observed directly, but rather the relaxation length. This length depends
not only on the tempersture but also on local density, flow velocity,
and extent of dissociation. Thus it requires a measurement of several
quantities to determine the function kg(T) at one temperature. Until
further experimental deta become available, however, Wigner!s theory of
the recombination process is regarded as the best basis for estimating
a rate constant. Collislon theory falls to consider some importent phys-~
leal features of the recombination process. The Eyring theory contributes
information about the relative reaction rasies for oxygen in an inert gas
atmosphere compared to oxygen in an atmosphere of nitrogen molecules.

It is not generally permissible to regard the vibrational relaxatlon
as fast compared to chemical relaxation. In fact the present calcula-
tions indicate that at high temperatures the rate of dissoclation adjust-
ment of oxygen is greater than the rate of vibrational adjustment.
However, even when vibrational relaxation 1s relatively slow, it may turn
out to be entlrely negligible because the energy involved in vibrations
1s small, The study of the coupling of the two relaxstion times, when
they are of the same order of magnitude, holds promise in ylelding
information about the reaction mechanism.

Ames Aeronautical Iaborstory
National Advisory Committee for Aeronsutilcs
Moffett Field, Calif., Sept. 10, 1957



36 NACA TN 41k
APPENDIX A
THE SOLUTTON OF EQUATION (7)
To prove that equation (10) in the text, -

- %5(0)
x(y) = %(¥) + € () [x(0) ~xo(y) T + e=5(¥) f o) eS¥axl
Xoo(¥

is the solution of the linearized farm of equation (7):

The standard form of the solution of the linear first-order equa=-
tion (7) is .

x(z) = oS0 fo 7 2= 6yt + x(0) | (a1)

From the definition of S, one has

fy.ﬁ es(y')dyl =fy XmE_ esd.y' =f}%°(Y)X;°eS* g‘?’_*dxgo
0 M 0

%(¥) 1 4 N - : - %0(0) _x
- = (%857) e8| dxgy = eFx-x:5(0) 5" ax;
fxm(o) (o Gone" et < s, +fxm<y> =

Putting this result into equation (Al) gives equation (10).
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APPENDIX B
CORRECTIONS TO COLLISION THEORY

The efficiency of a triple collision, I', is not, in general, a
constant. A crude estimate of this quantity (ignoring the steric factor)
might be made as follows: A triple collision 1s successful if the ini-
tlal velocities of the three particles are such as to lead to a final
state In which the two oxygen atoms are bound:

1 { Mg 2
) <'§‘> v':'c'elta:l:,ive <v(x) (31)

The prime indicates final velocities. This condlition on the velocities
depends on r, the distance of the two oxygen atoms when the triple
collision is occurring. To simplify things we note VZ . = OV, 2

relative
and replace (BL) by:

2 mgva'® < V(x) (22)

The proposed model for the recombination process is then as follows:
Oxygen atoms 1 and 3 are in collision (i.e., they are within a diametexr
of each other). A foreign atom, 2, collides with 1 and reduces its
velocity so as to satisfy (B2). We ask what fraction of triple collisions
satisfy (B2).

When it enters the potential field, particle 1 will increase its
kinetic energy by the amount V so the number which "while in collision®
have a velocity squared between v32 4+ 2V/m; and viZ + 2V/my + av,2 is:

- s/2 myv32
hig <—2i V12 + V) d.vlz = ( o1 e 2KT Ye—l- clvlz

27kT

At any one time the number in collision in a given veloeclty range is
proportional to the duration of collision which varies as

1/Jvi® + 2V/m = 1/v;. This approximation is evidently best when
V/KT << 1. TIf the center of mass of 1 and 2 is assumed at rest then the
relative frequency of triple collision of different velocities 'v_3> is

2
(mg /27KT) |va [e™BVS /2%T dg. So finally we have for the average
effectiveness of a triple collision:
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mava2 myva2 -

Jf v vee 2KT T T2KT d.?r-:d.vf
Vl'2<-2—-

my

(r) =

- Mg Va2 - myva2
ﬂ vae 2KkT 2kT d'w-rg dvq2
all velocitiles .

For slmplicity we take m; = ms = m, and then "_V1'2+V3‘2= <v12+§f¥- +va23,
To avold the integration over angles we simply take

vyt 2 .]2.'- [(vla + %) + vsz]. Then the integrations are elementary gilving:

r(r) =1 -e % [1 + .gﬂ_j,u.;& (IZ_T)?] (B3)

When even in the tall of the potential V/kT 1s greater than or of the
order of unity, the effective size of the molecule decreases wlth rising
temperature, because collisions teking place in the long Van der Waal
tall of the potential curve will make an important contribution to the
total number of successful reactions. To make some estimate of this
effect, we note from equation (B3) that I 1s a decreasing function

as IV(r)I decreases, Now let us count only those triple collisions
ocecurring within a radius such that on the average (over velocity) they
have at least a probability T[V(r)/kT] = 1/n of succeeding. For exam-
ple, let us choose n - such that in the region of interest, I' can be
epproximated by some power law wlth an exponent s. Noting that the form
of the potential for large r is V(r) = - ¢/r8®, giving a maximum

1/s 1/e
1 c
T = Ipgx™ <‘ﬁ> —]:T>

then the diemeter ~rpg,~(c/kT)?/®. As the diemeter enters into the

expresslon for kr cubed, the effect of an increasing diameter is to
introduce a factor m
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APPENDIX C
ANATYSTS OF CONDITION (33) FOR NEGLECTING VIERATTONAT. RELAXATION

Generally one must look at all the flow equations, (22} to (27),
to see the effect of vibrational disequilibriitm. In s formal way these
equations are unchanged, although an equation for the rate of change of
vibrationsl energy (Ev) would have to be added. However the internal
energy and thus the enthalpy H (eq. (25)) become a function of the
amount of vibrational energy Ey and similerly the equilibrium con-
stant Ke (eq. (27)) will now depend both on T and E,, and finally the
chemical relaxation length A (eq. (22)) will depend on Ey.

It is stated in the text that if the condition AE,/AH <<1
(eq. (33)) is satisfied, the effects of vibrational disequilibrium are
unimportant. The quantity AEy 1is the change of vibrational energy
assuming no vibrational lag, thus glving an upper limit to the chenge
in Ey. We wish to show how this condition assures that neither H nor
Ke nor A 1s importently modified:

Thet the modification of H 1s negligible is expliclt in the con-
dition (33) end needs no further discussion. The necessary modification
of Ko 18 expressed by equation (34) (i.e., Ko(T) is replaced by
Ke{T, T)). These two numbers are significantly different only when
fv(Tv) and f(T) are very different and, consequently, AEy  1s large
and the inequality (33) cannot be fulfilled. (When one has a large
temperature gradient, AH can become qulte large, but AR, wlll increase

proportionally.)

From equations (27) and (8) it is seen that the inverse chemical
relaxation length 1s approximstely linesr in K. and also depends on
p, T, and u. The modifications required of p, P, and u to account
for vibrationsl lag can be shown to be proportional to the modification
in H. Thus if condition (33) is satisfied, neither Ke nor p, T, or u
are much changed due to the finite vibrational relaxstion time, and
therefore 1/A 1s not much chenged elthér.

Having pointed out that (33) is 1ndeed a sufficient condition, we
now show that condition (35) is practically equivalent to (33): For a
dissoclating diatomic gas As of molecular welght M of which a
fraction X = 19.1;\‘/1:114;L+2nA,2 is in atomic form, the internal energy conslsts
of random trensletional motion [Ep = 3/2 R‘I‘/MAz(l-l- X}1, rotetional energy
[Er = RT/Mp (1=X%)], vibrational energy [Ey = N/Ma,(1-X)el, energy due
to dissociation [Ep = (ND/Mp,)X], and electronic energy Eel. One then
obtains the following expression for the enthalpy per unlt mass H by
making use of the equatlon of state of the gas:
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H=E+£
o

ET+ER+EV+ED+Eel+(l+X)i%T— (o)
2

N RT 7+3x) ND
I oix E
MAZ( )€V+MAE<2 _J'_MAEXJ’ el

The expression (CL) does not assume either chemicel or vibrational
equilibrium. We make one simplifying assumption, namely, that changes
In electronic excitation do not occur. This is certainly a good approx-
imation at low temperatures, but the assumption must be dropped at very
high temperatures. The characteristic temgeratures (which sppear in the
Boltzmenn factor) are 22,710° K and 27,610° X for atomic oxygen and
nitrogen, respectively, while for molecular oxygen and nitrogen they are
11,34%0° K and 71,580° K. For air, if the nitrogen is undissociated but
& fraction x of the oxygen is dlssoclated, then

n
X l+--—1-2-—— =z 5%

o)
Do, + 7,
Now we have from equation (C1)
AAHv 3 - 1 = _ (c2)
—Z' kAT + 5 Jave '
1+ . '
Aey

Tt is evident from equation (C2) that the condition NBy/MH <<1 is

equivalent to s <<1l. This is the condition (35) that was

I D
3 KAT + 5 A

to be derived.
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